Basics of Synchrotron Radiation Beamlines and Detectors

•Basics of synchrotron radiation

- •X-ray optics as they apply to EXAFS experiments
- •Detectors

Important properties of Synchrotron Radiation

- Tunability
- High flux
- Collimation
- Polarization
- Time structure

Bending magnet radiation

Emission limited to angle range $1/\gamma$. $\gamma = 1957E(GeV)$

For APS: γ = 13699 or 1/ γ = 73 µrad

Tunability – Bending magnet

Flux / *mrad* / 0.1% *BW* = $2.457 \times 10^{13} E I G_1(y)$

Insertion device

Many bends to increase flux over single bend in bending magnet

APS Undulator A

Tunability - Undulators

Undulator energy tuned by varying its K value – usually by tuning the magnetic gap which varies B

 $K = 0.0934 \lambda_u \text{ [mm] } B_o \text{ [T]}$

Undulator A tuning curve

Figure 3. Tuning curves for the on-axis brilliance for the first three odd harmonics.

Source characterization

Flux – photons/sec/bandwidth Bandwidth usually chosen as 0.1% Most applications use 0.01-0.02%

Spectral Brilliance - flux/source size/source divergence Photons/sec/0.1% bandwidth/mm²/mrad²

Liouville's theorem – brilliance is conserved Optics can't improve brilliance of source

Higher Brilliance implies more flux on small samples

Comparison of source brilliance

10.97

Polarization

Both BM and standard ID's primarily polarized in the horizontal Fully polarized on axis

VERTICAL ANGULAR DISTRIBUTION OF PARALLEL AND PERPENDICULAR POLARIZATION COMPONENTS

Time structure

Storage rings store charge in discreet bunches

- Short pulses (100psec)
- 272 kHz circulation rate for an individual bunch at APS
- Many patterns possible (24, 324, 1296 bunches, hybrid fill with an isolated bunch)
- Generally not important, but can affect the deadtime of fast detectors
- Current gradually decays
 - Close shutters to refill
 - Topoff : refill with shutters open

X-ray Optics

- Mirror Optics
- Perfect crystals
- Typical beamline setups

Mirror optics

Glancing angle optics

- For small enough angles reflectivity nearly 100%
- Achromatic for energies less than critical energy
- Ultra-smooth surfaces needed (0.5 nm roughness)
- Critical energy approximately linearly related to angle

For example, for Rh,

 $E_c(keV) = 68/angle(mrad)$

- Small angles mean mirrors need to be long

X-ray Reflectivity

Beamline mirrors

Collimating or focusing mirrors: typically ~1m long

Collimating mirror

Need parabolic shape

$$q \rightarrow \text{infinity:} \qquad R_m = \frac{2p}{\sin\theta}$$

Collimation limited by source size:

 $\Delta \theta = \mathbf{S_v}/p$

SECONT OF COULD MIRROR WITH BENDER

VISION

ISO 9001 CERTIFIED

Kirkpatrick-Baez (K-B) mirrors

Separately focus the horizontal and vertical using elliptical mirrors

X-ray Optics – perfect crystals

- Bragg reflection and energy resolution
- Monochromators
- Detuning

Bragg reflection basics

- Bragg equation
 - Bragg equation $2dsin(\theta) = n\lambda$, $\lambda = 12.4/E(keV)$
- - Perfect crystal Si or diamond reflectivity nearly 1 over finite range $\Delta E/E$

Si 111 10 keV

Intrinsic Resolution of some common reflections

Reflection	ΔE/E
Si 111	1.3x10 ⁻⁴
Si 220	5.6x10 ⁻⁵
Si 311	2.7x10 ⁻⁵
Diamond 111	6.0x10 ⁻⁵

Energy Resolution

Depends on divergence and intrinsic resolution From derivative of Bragg equation, divergence results in: $\Delta E/E = \cot(\theta)\Delta\theta$ $\Delta \theta$ determined by slits or collimating mirror if present

Example: 1mm slit 30 m from source at 10 keV with Si 111 $\Delta \theta = 1/30000 = 3.3 \times 10^{-5}$, $\theta = 11.4$ or $\cot(\theta) = 4.9$ From divergence: $\Delta E/E = 3.3 \times 10^{-5}(4.9) = 1.6 \times 10^{-4}$

Add divergence term and intrinsic term in quadrature to get the approximate final resolution:

$$\Delta E / E = \sqrt{(1.6x10^{-4})^2 + (1.3x10^{-4})^2} = 2.1x10^{-4}$$
 (2.1 eV)

Double Crystal Monochromator

Use two crystals to minimize beam movement with angle change

For true fixed exit height need to change δ as angle changes

Horizontal focusing using sagittally bent crystal

Allows larger horizontal collection angle at higher energies Crystal radius must change with angle Anticlastic bending can be a problem – ribbed crystals Detuning can be less effective at removing harmonics

Detuning

Detuning can be used to reduce the relative amount of harmonics in the beam

Note: detuning can also affect energy resolution

Some typical beamline layouts

- Monochromator only
- Monochromator with focusing mirror
- Collimating mirror monochromator focusing mirror
- Collimating mirror sagittal focusing mono focusing mirror

Detectors

- Signal to noise requirements
- Possible performance of ideal detectors
- Short description of some common detectors
 - Ion chambers
 - Multielement and deadtime issues
 - Filters and slits
 - Diffraction based detectors

S/N requirements

3 measurement regimes:

• Detection of element (imaging)

- -S/N > 10
- -10⁴ data points

• Near edge measurements

- -S/N > 100
- -50-100 data points

• Extended fine structure (EXAFS)

- -S/N > 1000
- -100-300 data points
- No background: $S / N = \sqrt{\text{detected counts}}$

Performance of Ideal Fluorescence Detector

- High flux beam provides > 10¹² ph/sec
- For EXAFS need > 10⁶ signal counts/pt
- Fluorescence yield 20-50%

If the absorption from the element of interest is about 10⁻⁶ of the total, a spectrum can be acquired in a few seconds/pt.

Practical limitations

- Can't collect 4π
 - Good goal is 25% of 4π
- Fluorescence absorbed in sample
 - Negligible for surface or thin sample
 - Maybe factor of 5 for thick sample
- Radiation Damage

10⁻⁶ absorption still feasible in 1-2 hrs.

Example for Fe

- 10⁻⁶ absorption gives 3x10¹³ atoms/cm²
 - small fraction of monolayer
- in solution:
 - 0.4 ppm by weight
 - 6 micromolar
- in Silicate mineral:
 - 5 ppm by weight

Current Detectors

• Can be compared by effective count rate:

$$N_e = N_f / \sqrt{1 + N_b / N_f}$$

- Note: background scattering can be 1% of total absorption
- N_b can exceed 10⁸, ie $N_b/N_f \sim 100$
- Also need to consider total counting rate detector can accept

Ion chambers

Multi-element solid state

- Resolution (fwhm) 200-300 eV
- Individual element limited to few x 10⁵
- Background or lower energy fluorescence lines can saturate countrate
- Standard arrays limited to about 30 elements

Typical spectrum- U contaminated Sediment

Dead time correction

Simple model:

OCR = ICR*Exp(-ICR*DT)

Pulsed source considerations

Filter can reduce the background in fluorescence measurement

Problem Rb fluorescence can enter the detector

Filter-slits (Stern-Heald or Lytle detector) see Stern and Heald, RSI 50, 1579 (1979)

- •Large solid angle (large N_f)
- Unlimited count rate
- •Moderate reduction in background N_b still problem
- •Little rejection of lower energy fluorescence lines
- •Near practical limits
- •Works best for K edges above 4 keV

Diffraction based detectors

- Rowland circle, log-spiral (Bragg and Laue), multilayers
- Can have excellent resolution and background discrimination
- Unlimited count rates if integrating detectors used
- Usually require focused beam (0.1 mm)

WDX detector (Rowland circle)

Very good energy resolution and background discrimination

Poor collection efficiency

Log Spiral Laue detector

Log spiral detector (cont.)

See: C. Karanfil, Z. Zhong, L.D. Chapman, R. Fischetti,G.B. Bunker, C.U. Segre, and B.A. Bunker, *SynchrotronRadiation Instrumentation, Eleventh U.S. NationalConference*, edited by P. Pianetta et al., Vol. **521**, pp. 178-182 (American Institute of Physics 2000).

Performance for detection of U

Detection of Ga in Nickel-Iron Meteorite courtesy of Ron Cavell – Univ. of Alberta

Further development of both solid-state arrays and diffraction-based detectors warranted

• Solid state arrays:

- Need to handle $>10^8$ hz
- Preferable to keep resolution close to 200 eV
- Si drift detectors look promising
- Diffraction based detectors:
 - Need to increase efficiency (multiple crystals)
 - Should strive for better resolution than solid state detectors
 - If above met, best bet for extreme diluteness
 - Need 0.1-0.2 mm high beam