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       Transition metal oxide systems display a broad range of interesting and 
intriguing properties such as light induced changes in resistivity, 
superconductivity and  high magnetoresistance.  Materials of this class can 
be driven from an insulating to a metallic state by the applications of 
pressure, magnetic or electric fields. The properties of these materials 
depend on a delicate balance of long range and  
short range forces.  Consequently, the behavior of these materials is strongly 
influenced by local no-periodic structural distortions.  Synchrotron based x-
ray absorption measurements provide unique insight into the structure-
transport correlations. In this talk, simultaneous photododoping and x-ray 
absorption experiments on YBCO will be presented and the photo-induced 
charge transfer and structural changes will be discussed.  An outline of the 
theoretical framework will also be given. 

  



I.  X-Ray Absorption Spectroscopy (XAS)-Theory 
Overview 

 
 
See: 
    J. J.Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (200) and references 
therein. 
    T. A. Tyson, K. O. Hodgson, C. R. Natoli and M. Benfatto, Phys. Rev. B 
46, 5997 (1992) and references therein. 
 
Recall expression for cross section 
 

 
 
This can be written in terms of the Green's function of the cluster by using 
the identity 
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Hence we obtain the cross section 

 

 
 
where the Green's function satisfies 
 

H0 G+( r  , r ' , E) = [ ∇2 + E - V( r ) ] G+( r  , r ' , E) = δ( r  - r '  ) 
 
For the case of a muffin-tin type of potential (no overlaps) the Green's 
function is found to be  
 

 
 
but for the case of inner-shell excitations we need only the form 
 

 
 

where r  and r '  are centered on the absorber's sphere and we define  
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and similarly 
 

r> ≡ r         for  r > r'
r'         for  r'  > r . 

 
The final state wave function 
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has the radial part R l

 0( r ) that is the regular solution of the radial 
Schrödinger equation inside the absorber's sphere and matches on to 
(K-matrix normalization) 
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at the sphere radius.  The solution  
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is the singular (unbounded at the sphere origin) one and matches   
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 In angular momentum representation we write down the site 
diagonal T-matrix and free Green's function as 
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The unpolarized cross section is then  
 

 
 
with radial matrix elements 
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The important point to note is that the scattering path operator  
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can be expanded into successive terms representing scattering of the 
photoelectron off various centers.  More formally, again we write 
(dropping the subscript on G from now on for convenience) 
 

 
 
where the last expansion is valid only where the spectral radius ρ(TaG)  
(maximum modulus of the eigenvalues) of the matrix TaG is less than unity. 
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Hence the total fine structure due to an excitation channel l is  
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In other words we have 
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using the plane wave limit for G and assuming real potentials 
 

 
 
with 
 
κ ≡ E - VII   
and 
 

tl0(κ) ≡ ei δl0(κ) sin(δl0(κ)) 
we obtain the form of the single scattering signal 
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The third order signal is of the form  

 

 
 
yielding a structure of the type 
 

 sin{ 2δli+1
0 (κ) + κ[R0 r + Rr s + Rs 0]+ arg[F(κ)] } F(κ)

κR0 r Rr s Rs 0  
 
and so on for higher order signals.  The most general form of the n-th order 
signal is : 
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In summary we note that: 
 
1.  Frequency goes like total path length 
 
2.  Amplitude decays with increasing path length 
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II. Application of XAS Method 
A.  Photodoping Effects in YBCO  
 
 
 
 
Team Includes 
 

J. F. Federici, NJIT 

A. R. Bishop, Los Alamos Theory Group 

A. Ignatov, NJIT 
T. A. Tyson, NJIT 
 

Observations 
 
    See A. Gilabert et al.  J. Supercon. 13, 1 (2000) 

• Kudinov et al.  Reported changes in the resistivity of 
YBa2Cu3O6+x with a maximum occurring near x=0.34 
Phys. Rev.  47, 9017 (1993). 

 
• Unlike transient photoconductivity in YBCO with τ ~ 1 ns 

 
 

• Unlike photoconductivity in La2CuO4 with τ ~ 10 s. 
 
 

Photoconductivity exist for days if sample is kept at low 
temperatures 



Two Models 
 
 

1. Oxygen Ordering  
Photodoping leads to ordering of oxygen atoms in the chains 

 
 
 
 

2. Charge-Transfer 
Photoabsorption  creates electron hole pairs.  The electron is 
trapped in chain  defects while the holes contribute to the 
net number of carries 

 
 



Phase diagram and photodoping model from Kudinov et al.



Unit Cell of YBCO (PRB 36, 5251 (1987))



 
 
 
 
 
 
 
 
 
 

 
Effect of photodoping on 
the resistivity of YBCO as 
a function of oxygen 
content. Note that the 
largest effect is near 
x=0.35  (PRL 72, 1537 
(1994)) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Change in  XRD 
pattern with 
photodoping.  
Note the 
contraction of 
the c-axis 
length.



 
 
  
 
 
 
 
 
 
 
 
XRD reveals a 
narrowing of the 
00L lines with 
photodoping



(a)  
 
 
 
 
 

 
 
Comparison of the recovery of the resistivity and c lattice constant  of photodoped YBCO 
(APL 64, 652 (1994) with the recovery of Tc in quenched YBCO powder (Physics C 167, 
571 (1990)). 
 
 



 
Recovery of lattice constants and bond distances in quenched YBCO powder (Physics C 
167, 571 (1990)). 



 

 
 
Photodoping efficiency as a function of photon energy measured at 294 K. 



 
 
Measured response of film studies at 306 K. 



 
 
 
The XANES spectra of YBa2Cu3O6.4 for the normal (solid line) and photodoped (dotted 
line) states reveal that photodoping induces a transfer of holes (4pz ) to Cu(2).  The inset 
displays the difference between the two spectra.  All measurements reported in this work 
were performed at 95 K.  The  quantitative structural information has been extracted from 
a detailed analysis of the high-energy EXAFS region.  



 
 
Magnitude of the Fourier transform of k3∗XAFS for k = 2.8–11.7 Å-1 for  normal (solid 
line) and photodoped (dotted line) YBa2Cu3O6.4 system. The first peak (1-2 Å) 
corresponds to the c-axis Cu-O bond distribution.  The second and third peaks centered 
near 3 Å  and 4 Å contain the Cu(2)-Y/Cu(1,2)-Ba and Cu(2)-Cu(1) contributions, 
respectively. Changes occur both in the nearest neighbor Cu-O distribution and at the 
Cu(2)-Cu(1) position.  Note that the peak positions in the raw Fourier transforms are at a 
shorter distance than the crystallographic bonds due to corrections from the central atom 
phase shift and the scattering atom phase function.   The inset displays the corresponding 
raw data in k-space.  



 
The Cu-O signals obtained by filtering the transformed data over the range 0.8-2.0 Å.  
The solid line and dotted lines correspond to the normal and doped systems, respectively. 
Note that a near  cancellation of the doped signal occurs near  k ~ 9.6 Å-1.   This “beat” is 
due to the interference of signals and indicates the presence of a pair of  Cu-O peaks with 
close separation ∆r ~ π/2*k.=0.16 Å  



 
Model fit to the filtered signal for YBa2Cu3O6.4 in the normal (a) and photodoped (b) 

states over the range 3.80 - 11.7 Å-1.  In panel (a), the total signal is given as the lower 
curve (solid line) with the full fit given by the dashed line.  The individual components 
(shells) are also given with the theoretical model  signal (see text) represented by the 
dashed lines.  Shell 1 is at 1.87Å and shell 2 is at 2.25Å (Table I) .    The solid line shown 
for each shell is the residual obtain by subtracting off all other shells from the total signal.  
In the case of the normal system only two c-axis Cu-O bonds (short Cu(1)-O(4)  due to 
chains and long Cu(2)-O(4) due to planes) were found.  Panel (b) displays the 
corresponding fits for the photodoped state with shell 1 is at 1.81 Å, shell 2 is at 2.00 Å 
and shell 3 is at 2.25Å. 



 
 
 
 
Generated radial distribution based on the Debye-Waller factors extracted from the Fit.  
The solid line corresponds to the undoped film and the dashed line corresponds to the 
doped sample.  Note the sharpening of the short Cu-O bonds due to photodoping. 





 
 



Summary of  Main Results 
 
 
 
Evidence of hole transfer into the CuO2 planes accompanying photodoping is found 
 
 
 
A local distortion of the CuOx chains is observed 
 
 

The results are consistent with photoinduced chain ordering.                                                                                                                                                                                              
 


