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Miscellaneous: E to k

W L3-edge 
XANES of 
tungsate

• k = (2m(E-E0)/h2)½

• k = (0.2625 x [E-E0])½

E-E0 k
1 0.51
5 1.15

10 1.62
15 1.98
20 2.29
25 2.56
30 2.81
50 3.62

100 5.12
250 8.10
500 11.46
750 14.03

1000 16.20
1500 19.84
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Miscellaneous: Absorption edges

Absorption edge Core level 
K 1s 
LI 2s 
LII 2p1/2 

LIII 2p3/2 
MI 3s 
MII 3p1/2 

MIII 3p3/2 
MIV 3d3/2 
MV 3d5/2 
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Miscellaneous: mesh size
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Miscellaneous: “Yellow book”
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Acronyms

XANES

• X-ray Absorption Near Edge Structure

NEXAFS

• Near-Edge X-ray Absorption Fine Structure

The two acronyms should be interchangeable but over 
the years NEXAFS has become terminology for “low Z” 
elements - C, N, O...
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What Is XANES?
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XANES
EXAFS

X-ray absorption 
spectrum of 
molybdenum metal 
from 19.8 to 21.5 keV

• XANES is region of x-ray absorption spectrum within ~50eV of the absorption edge.

• Suggested that division is that at which wavelength of excited electron is equal to 
distance between absorbing atom and its nearest neighbor. (λ (Å) ≈ 12/[e(eV)] ½.



EXAFS Data Collection and Analysis Course, NSLS, June 22-24, 2004 
© 2004 UOP LLC All Rights Reserved

Page 8

What Is XANES?
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(X-ray absorption spectrum of Ti K-edge of Ba2TiO4)

XANES= Pre-edge + Edge + XANES
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W L3-edge 
XANES of 
tungsate

“White line”

• In years past x-ray absorption spectra were taken with use of photographic plates.

• Absorption edges appeared as unexposed bands on the plate (developed in 
negative), or “white lines”. 

• Very prominent for L-edges of transition metals in high oxidation states.
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Number of “XANES” 
Publications
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• >500 publications per year!
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Why Are We Interested In XANES? 
Local Coordination Environment

Ba2TiO4

K2TiSi3O9

Both Ti4+

Ba2TiO4

K2TiSi3O9

• Ti K-edge XANES shows dramatic dependence on 
the local coordination chemistry.
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Why Are We Interested In XANES? 
Oxidation State

MnO Mn2O3 MnO2
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Mn K-edge Energy, eV

• Many edges of many elements show significant edge shifts 
(binding energy shifts) with oxidation state.

• First observation was by Berengren for phosphorus in 1920*!
*See “A history of X-ray absorption fine structure”, R. Stumm von Bordwehr, Ann. Phys. Fr. 14 (1989) 377-466)
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What Is XANES and Why Are We Interested?
XANES is strongly sensitive to the chemistry (formal 
oxidation state and geometry) of the absorbing atom.

Region Transitions Information Content

Pre-edge Features caused by
electronic transitions to
empty bound states.
Transition probability
controlled by dipolar
selection rules.

Local geometry around absorbing atom.
Dependence on oxidation state and bonding
characteristics (chemical shift).

Edge Defines ionization
threshold to continuum
states.

Dependence on oxidation state (chemical
shift), main edge shifts to higher energy with
increased oxidation state. (As much as 5 eV
per one unit change).

XANES Features dominated by
multiple-scattering
resonances of the
photoelectrons ejected at
low kinetic energy. Large
scattering cross section.

Atomic position of neighbors: interatomic
distances and bond angles.  Multiple
scattering dominates but ab initio
calculations providing accessible insight (e.g.
FEFF8).
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XANES Transitions
• XANES directly probes the angular momentum of the 

unoccupied electronic states: these may be bound or unbound, 
discrete or broad, atomic or molecular.

• Dipole selection rules apply*: ∆l = ±1, ∆j = ±1, ∆s = 0.

• Primary transition will be:

• s → p for K (1s core electron) and L1 (2s core electron 
initial state) edges

• p → d for L2 (2p½) and L3 (2p3/2) edges 

• But…..final state usually not atomic-like and may have 
mixing (hybridization) with other orbitals. This is often the 
interesting part of the XANES!

* Some transitions are true quadrupolar transitions. These are usually very weak.
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XANES Interpretation
• The EXAFS equation breaks down at low-k, which complicates 

XANES interpretation.

• We do not have a simple equation for XANES.

XANES can be described qualitatively (and nearly quantitatively) in terms of:

coordination chemistry regular, distorted octahedral, tetrahedral…

molecular orbitals p-d hybridization, crystal field theory

band structure the density of available occupied electronic states

multiple scattering multiple bounces of the photoelectron

• These chemical and physical interpretations are all related:

What electronic states can the photoelectron fill?
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Advantages of XANES vs. EXAFS
• Spectra simpler to measure than EXAFS: features intense, concentrated 

in small energy region. 

• Weak temperature dependence (Debye-Waller), so spectra can be 
recorded at reaction temperature (in situ): 

• Exp(-2k2σ2) = exp(-2(0.5)2 x 0.005)  ~ 1
• Faster to measure than full spectrum: <msec demonstrated. 

• Sensitive to chemical information: valence, charge transfer.

• Probes unoccupied electronic states: important in chemistry.

• Often used as simple “fingerprint” to identify presence of a particular 
chemical species.

• Beamlines with micro-probe capabilities can also scan energy and obtain 
XANES spectra with elemental distribution. 
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XANES Analysis: Oxidation State
Sulfur

• Sulfur K-edge XANES used to 
identify and quantify the form of 
sulfur in heavy petroleum, coals, soils 
etc.

• 11 eV edge shift from S2- to S6+.

• Spectra of S in similar environments 
similar: thiophene, benzothiophene.

• Can be used as fingerprint.

Reference: George and Gorbaty, J. Am. Chem. Soc. 101 (1979) 3182
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XANES Analysis: Oxidation State
Sulfur
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Dodecyl sulfide, thiophene, tetramethylene sulfoxide, tetramethylene sulfone, sulfate(aq)
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XANES Analysis: Oxidation State
Many, many examples in the literature…...

V K-edge

Ref: Wong et al., Phys Rev. B 30 (1984) 5596

Re L3-edgeMo K-edge

10534
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Ref: Cramer et al., JACS, 98 (1976) 1287
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XANES Analysis: Oxidation State
Mo K-edge XANES of Mo oxides
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• Linear fit of Mo valence with K-edge position only 
obtained using a feature above the absorption edge!

T. Ressler et al. J. Cat 210 (2002) 67
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Ti K-edge XANES: Reference Compounds

E0 = 4966.0 eV

Anatase - 6 coordinate

Fresnoite -
5 coordinate

Barium 
orthotitanate -
4 coordinate

1s → 3d

• Symmetry around absorbing atom strongly affects pre-edge transition: 
ability to differentiate 4, 5, 6-fold coordination.

Local Site Symmetry in Ti-containing Compounds
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Local Site Symmetry in Ti-containing Compounds
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• Correlation between absolute position and peak height of pre-edge 
peak: all 4-fold, 5-fold and 6-fold coordinated Ti compounds fall into 
separate domains.

• Ability to distinguish Ti coordination from pre-edge peak information.

Reference: Farges et al., Geochim. 
Cosmochim. 60 (1996) 3023 
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XANES of 3d Transition Metals: 
Coordination

• For Td symmetry 1s to 3d pre-
edge peak sharp and intense 
from Ti→Mn, decreases Fe →
Cu, absent for Zn.

• Decrease in intensity due to 
progressive filling of the 3d 
band.

• Oh symmetry shows only a small 
pre-edge peak throughout series.

Td Oh

Ref: Lytle et al. Phys. Rev. B 37 (1988) 1550.
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“White line” Intensity of Group VIII Metals

L3 edge XANES 
for 5d metals

Reference: G. Meitzner et al., J. Phys. Chem. 96 (1992) 4960

• Transition from 2p3/2 to 5d states.

• Absence of peak for Au: 5d states almost completely occupied (d10).

• For others Pt (d9)<Ir (d7)<Os (d6)<Re (d5), corresponding to increase in 
number of unoccupied 5d states on the atoms.
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Quantification of “White Line”
• Fit to combination of Lorentzian and 

arctangent functions.

• Determine: area, fwhm, position.

• Linear correlation between 
white line area and number of 
5d-holes for Au-Re

Ref: Lytle et al., Proc. 9th Int. Congr. Catal, Vol 5 (1988) 54



EXAFS Data Collection and Analysis Course, NSLS, June 22-24, 2004 
© 2004 UOP LLC All Rights Reserved

Page 26

“White Line” Intensity: Oxides
Re L3-edge - Transition from 2p3/2 to 5d states.

Re metal (Re0) - 5d5

ReO2 (Re4+) - 5d1

NH4ReO4 (Re7+) - 5d0

• Intensity of Re L3 white line probes Re LDOS
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“White Lines”: large change in absorption coefficient
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• Step height linear with concentration from 100-10,000 ppm S - but 
relative white line intensity constant only for <2000 ppm.

• Important if using a “reference” spectrum for fitting or fingerprinting.
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Caution about use of absolute intensity of 
“white line”

Pickering et al. Biochem 40 92001) 8138

Solid sulfur, S8

• Calculation of sulfur K-edge 
XANES (2.47 keV) for different 
spherical particles of sulfur.

• Severe distortion of the spectrum 
for particles 1 µm radius! One 
absorption length is ~ 2 µm.

“Due to their relatively high sulfur 
concentrations, all standards were 
powdered and sieved to particles sizes 
≤10µm in diameter to minimize self-
absorption effects at the sulfur K-edge” 
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L3

L2

• Significant difference in L3 and L2 edge XANES: 2p to 5d transitions.

•Pt 5d3/2 filled, so no white 
line.L2 shifted to align with L3 edge.

EF
5d5/2

5d3/2

L3 L2

2p1/2
2p3/2

•Same l=2 final density of states but because of selection rule,  ∆j = ±1, 
different total quantum number probed.

• j=3/2 probed by L2-edge, j=5/2 probed by L3-edge.

Pt L3 and L2 Edge XANES
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• Transition is 2p to 5d: Pt d-band full, so “no” intensity at edge.
• PtGe intermetallics: charge transfer from d-band of Pt to Ge, resulting in 

significant intensity at edge.
• Use as signature of Pt-Ge intermetallic formation.
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Effect of Adsorbed Hydrogen on Pt L3 XANES

• White-line intensity decreases 
and spectra broaden to higher 
energies as H is added.

• Difference signal typically leads 
to broad structure ~8 eV above 
absorption edge.

• Several different interpretations 
in the literature.
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Increasing H coverage
10-15Å Pt clusters 
supported on Al2O3
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Which Edge to Choose: Energy Resolution
Mo K-edge XANES of Na2MoO4
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• Mo K-edge at 20.00 keV, effective resolution of 10 eV 
dominated by core-hole lifetime.
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Which Edge to Choose: Energy Resolution
• Comparison of normalized Mo L3-edge (2.5 keV) XANES 

of Na2MoO4 with that of Mo K-edge (20.0 keV).
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• Mo L3-edge at 2.5 keV, 0.5 eV spectral resolution!
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Which Edge to Choose: Energy Resolution
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• ∆E tetrahedral = 2.2-2.5 eV; ∆E octahedral = 3.25-4.2 eV
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Experimental in 
situ/operando cells 

for XAFS 
experiments used by 

UOP
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Time Evolution of XANES: Kinetics
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Time Evolution of XANES: Kinetics
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Q-XANES & D-XANES
Quick XANES

• Slew monochromator continuously to obtain a XANES 
spectrum in few seconds.

• All modes of detection.

Dispersive XANES

• Polychromatic beam dispersed onto linear detector.

• XANES spectrum in msec.

• Transmission only.

• Need extremely uniform samples.



EXAFS Data Collection and Analysis Course, NSLS, June 22-24, 2004 
© 2004 UOP LLC All Rights Reserved

Page 39

Micro-XANES
• Use special optics to focus x-ray beam to 10µm diameter (X26A) or <1µm 

diameter at APS.

• Combined with x-ray microprobe: elemental composition maps and 
oxidation state/local coordination.

• Applications:
– Speciation of metals in soils, sediments and organisms

– Grazing incidence studies of cations and anions on surfaces 

– Time-resolved studies of reactions on surfaces and interfaces

– High temperature studies (trace elements in melts)

– Oxidation states of planetary material

– High pressure phases (diamond anvil cell)

• See http://www.bnl.gov/x26a/ for information.
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Analysis of Mixtures

• XANES useful technique to quantitatively determine 
composition of a mixture of species.

• Useful for following time evolution of species during 
a chemical reaction.

• Two most common methods:

– Least squares linear combination fitting

– Principal component analysis
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Least Squares Linear Combination 
Fitting

• Use a linear combination of spectra of various reference 
samples.

• Allows quantification of species in multiple-component 
mixture from their fingerprint in the XANES region.

• Use a least-squares algorithm to refine the sum of a given 
number of reference spectra to an experimental spectrum.

• Simple method, easy to implement.

• Must have good quality spectra of the reference 
compounds recorded under similar conditions – energy 
alignment is critical.
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Linear Combination Fitting
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Linear Combination Fitting
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Principal Component Analysis

• Used since 1970’s in other chemical spectroscopy†. First 
published reference in XANES 1992*.

• Traditional approach: choose pure model standard, fit 
edges to these standards, but…

• How many standards are needed?

• How do we know models are reasonable?

• If you have wrong group of standards…there is no way 
to get the correct answer...

†Factor Analysis in Chemistry, 2nd Ed. John Wiley & Sons, NY, 1991

*Determination of molybdenum surface environment of molybdenum/titania catalysts by EXAFS, 
XANES and PCA. Mikrochimica Acta 109 (1992) 281.
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Principal Component Analysis
• PCA estimates number of distinct species in a series of spectra.

• Used as a first stage of analysis.

• Based on linear algebra - each spectrum represented as a vector.

• Goal is to find number of components that can reproduce the experimental 
spectra to within experimental (statistical) error.

• No a priori assumptions on number/type of components.

• Growing popularity in XANES spectroscopy*.
*”Principal component analysis approach for modeling sulfur K-XANES spectra in humic acids”, S. Beauchemin et 
al., Soil. Sci. Soc.Am.J., 66 (2002) 83.

“Quantitative speciation of Mn-bearing particulates emitted from autos burning mcp-Mn gasolines using XANES 
spectroscopy”, T. Ressler et al., Environ. Sci. Technol., 34 (2000) 950.

“EXAFS and principal component analysis: a new shell game”, S. Wasserman et al., J. Synch. Rad., 6 (1999) 284.

“The kinetic significance of V5+ in n-butane oxidation catalyzed by vanadium phosphates”, G.W. Coulston et al., 
Science, 275 (1997) 191

“XANES-TPR study of Cu-Pd bimetallic catalysts: application of factor analysis”, M.Fernandez-Garcia et al., J. 
Phys. Chem 99 (1995) 12565.
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Potential pitfalls and 
drawbacks of PCA

• Principal components not equal to chemical species.

• Constant ratio of two (chemical) components.

• Temperature increase during measurement.
• Additional information required to transform abstract 

results in meaningful speciation (either references or 
concentrations).

• But: Powerful method to reduce ambiguity in qualitative 
and quantitative analysis of a series of XAS spectra 
(“model-free”).
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Feff8.1 and XANES

• Dramatic progress in past decade both in theory and ab 
initio calculations.

• Significant progress has been made in understanding 
XANES.

• Quantitative theory central to quantitative interpretation 
of XAFS spectra in terms of local geometric and 
electronic structure.

• Will hear more about Feff tomorrow!
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Feff8.1 and XANES: Pt L-edges
Feff reproduces differences in 

white line at Pt L3,2-edges Pt L3-edge XANES as function 
of Pt cluster size
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Preliminary FEFF8 Calculations
Naked Re Clusters
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Large white line variation with Re cluster size.

Convergence at ~39 atom cluster.
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Summary
XANES is a much larger signal than EXAFS

XANES can be done at lower concentrations, and less-than-perfect 
sample conditions.

XANES is easier to crudely interpret than EXAFS

For many systems, the XANES analysis based on linear combinations of 
known spectra from “model compounds” is sufficient.

More sophisticated linear-algebra techniques, such as principal 
component analysis can be applied to XANES spectra.

XANES is harder to fully interpret than EXAFS

The exact physical and chemical interpretation of all spectral features is 
still difficult to do accurately, precisely, and reliably.

This situation is improving…..
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